Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Circ Heart Fail ; 14(3): e007767, 2021 03.
Article in English | MEDLINE | ID: covidwho-2319497

ABSTRACT

BACKGROUND: The expense of clinical trials mandates new strategies to efficiently generate evidence and test novel therapies. In this context, we designed a decentralized, patient-centered randomized clinical trial leveraging mobile technologies, rather than in-person site visits, to test the efficacy of 12 weeks of canagliflozin for the treatment of heart failure, regardless of ejection fraction or diabetes status, on the reduction of heart failure symptoms. METHODS: One thousand nine hundred patients will be enrolled with a medical record-confirmed diagnosis of heart failure, stratified by reduced (≤40%) or preserved (>40%) ejection fraction and randomized 1:1 to 100 mg daily of canagliflozin or matching placebo. The primary outcome will be the 12-week change in the total symptom score of the Kansas City Cardiomyopathy Questionnaire. Secondary outcomes will be daily step count and other scales of the Kansas City Cardiomyopathy Questionnaire. RESULTS: The trial is currently enrolling, even in the era of the coronavirus disease 2019 (COVID-19) pandemic. CONCLUSIONS: CHIEF-HF (Canagliflozin: Impact on Health Status, Quality of Life and Functional Status in Heart Failure) is deploying a novel model of conducting a decentralized, patient-centered, randomized clinical trial for a new indication for canagliflozin to improve the symptoms of patients with heart failure. It can model a new method for more cost-effectively testing the efficacy of treatments using mobile technologies with patient-reported outcomes as the primary clinical end point of the trial. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04252287.


Subject(s)
Canagliflozin/therapeutic use , Heart Failure/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Telemedicine , Actigraphy/instrumentation , Canagliflozin/adverse effects , Double-Blind Method , Exercise Tolerance/drug effects , Fitness Trackers , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Mobile Applications , Quality of Life , Randomized Controlled Trials as Topic , Recovery of Function , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Stroke Volume/drug effects , Telemedicine/instrumentation , Time Factors , Treatment Outcome , United States , Ventricular Function, Left/drug effects
3.
Nat Med ; 28(4): 809-813, 2022 04.
Article in English | MEDLINE | ID: covidwho-1713203

ABSTRACT

Large traditional clinical trials suggest that sodium-glucose co-transporter 2 inhibitors improve symptoms in patients with heart failure and reduced ejection fraction (HFrEF) and in patients with heart failure and preserved ejection fraction (HFpEF). In the midst of the Coronavirus Disease 2019 pandemic, we sought to confirm these benefits in a new type of trial that was patient centered and conducted in a completely remote fashion. In the CHIEF-HF trial ( NCT04252287 ), 476 participants with HF, regardless of EF or diabetes status, were randomized to 100 mg of canagliflozin or placebo. Enrollment was stopped early due to shifting sponsor priorities, without unblinding. The primary outcome was change in the Kansas City Cardiomyopathy Questionnaire Total Symptom Score (KCCQ TSS) at 12 weeks. The 12-week change in KCCQ TSS was 4.3 points (95% confidence interval, 0.8-7.8; P = 0.016) higher with canagliflozin than with placebo, meeting the primary endpoint. Similar effects were observed in participants with HFpEF and in those with HFrEF and in participants with and without diabetes, demonstrating that canagliflozin significantly improves symptom burden in HF, regardless of EF or diabetes status. This randomized, double-blind trial, conducted without in-person interactions between doctor and patient, can serve as a model for future all-virtual clinical trials.


Subject(s)
COVID-19 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Ventricular Dysfunction, Left , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Heart Failure/diagnosis , Heart Failure/drug therapy , Humans , Patient-Centered Care , Quality of Life , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume
4.
Heart Lung Circ ; 30(6): 786-794, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1217564

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which is responsible for coronavirus disease 2019 (COVID-19), uses angiotensin (ANG)-converting enzyme 2 (ACE2) as the entrance receptor. Although most COVID-19 cases are mild, some are severe or critical, predominantly due to acute lung injury. It has been widely accepted that a counter regulatory renin-angiotensin system (RAS) axis including the ACE2/ANG [1-7]/Mas protects the lungs from acute lung injury. However, recent evidence suggests that the generation of protective ANG [1-7] in the lungs is predominantly mediated by proinflammatory prolyl oligopeptidase (POP), which has been repeatedly demonstrated to be involved in lung pathology. This review contends that acute lung injury in severe COVID-19 is characterised by a) ACE2 downregulation and malfunction (inflammatory signalling) due to viral occupation, and b) dysregulation of the protective RAS axis, predominantly due to increased activity of proinflammatory POP. It follows that a reasonable treatment strategy in COVID-19-related acute lung injury would be delivering functional recombinant (r) ACE2 forms to trap the virus. Additionally, or alternatively to rACE2 delivery, the potential benefits resulting from lowering POP activity should also be explored. These treatment strategies deserve further investigation.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Renin-Angiotensin System/immunology , Signal Transduction , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , COVID-19/metabolism , COVID-19/physiopathology , COVID-19/virology , Down-Regulation , Drug Discovery , Humans , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/immunology
5.
Eur J Heart Fail ; 23(11): 1891-1902, 2021 11.
Article in English | MEDLINE | ID: covidwho-1209196

ABSTRACT

AIMS: Viral-induced cardiac inflammation can induce heart failure with preserved ejection fraction (HFpEF)-like syndromes. COVID-19 can lead to myocardial damage and vascular injury. We hypothesised that COVID-19 patients frequently develop a HFpEF-like syndrome, and designed this study to explore this. METHODS AND RESULTS: Cardiac function was assessed in 64 consecutive, hospitalized, and clinically stable COVID-19 patients from April-November 2020 with left ventricular ejection fraction (LVEF) ≥50% (age 56 ± 19 years, females: 31%, severe COVID-19 disease: 69%). To investigate likelihood of HFpEF presence, we used the HFA-PEFF score. A low (0-1 points), intermediate (2-4 points), and high (5-6 points) HFA-PEFF score was observed in 42%, 33%, and 25% of patients, respectively. In comparison, 64 subjects of similar age, sex, and comorbidity status without COVID-19 showed these scores in 30%, 66%, and 4%, respectively (between groups: P = 0.0002). High HFA-PEFF scores were more frequent in COVID-19 patients than controls (25% vs. 4%, P = 0.001). In COVID-19 patients, the HFA-PEFF score significantly correlated with age, estimated glomerular filtration rate, high-sensitivity troponin T (hsTnT), haemoglobin, QTc interval, LVEF, mitral E/A ratio, and H2 FPEF score (all P < 0.05). In multivariate, ordinal regression analyses, higher age and hsTnT were significant predictors of increased HFA-PEFF scores. Patients with myocardial injury (hsTnT ≥14 ng/L: 31%) vs. patients without myocardial injury, showed higher HFA-PEFF scores [median 5 (interquartile range 3-6) vs. 1 (0-3), P < 0.001] and more often showed left ventricular diastolic dysfunction (75% vs. 27%, P < 0.001). CONCLUSION: Hospitalized COVID-19 patients frequently show high likelihood of presence of HFpEF that is associated with cardiac structural and functional alterations, and myocardial injury. Detailed cardiac assessments including echocardiographic determination of left ventricular diastolic function and biomarkers should become routine in the care of hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Heart Failure , Adult , Aged , Echocardiography , Female , Heart Failure/epidemiology , Humans , Middle Aged , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
6.
Heart Fail Rev ; 27(1): 235-238, 2022 01.
Article in English | MEDLINE | ID: covidwho-1023339

ABSTRACT

The COVID-19 pandemic underscored our healthcare system's unpreparedness to manage an unprecedented pandemic. Heart failure (HF) physicians from 14 different academic and private practice centers share their systems' challenges and innovations to care for patients with HF, heart transplantation, and patients on LVAD support during the COVID-19 pandemic. We discuss measures implemented to alleviate the fear in seeking care, ensure continued optimization of guideline directed medical therapy (GDMT), manage the heart transplant waiting list, continue essential outpatient monitoring of anticoagulation in LVAD patients and surveillance testing post-heart transplant, and prevent physician burnout. This collaborative work can build a foundation for better preparation in the face of future challenges.


Subject(s)
COVID-19 , Heart Failure , Heart Transplantation , Heart-Assist Devices , Heart Failure/therapy , Humans , Pandemics , SARS-CoV-2
7.
J Cachexia Sarcopenia Muscle ; 12(1): 9-13, 2021 02.
Article in English | MEDLINE | ID: covidwho-1001858

ABSTRACT

Patients with COVID-19 disease are prone to develop significant weight loss and clinical cachexia. Three reports with altogether 589 patients that reported on weight loss and cachexia in COVID-19 were identified. Disease severity of patients and the timing of the assessment during the disease course in these patients were variable-65 patients (11%) were intensive care treated at the time of assessment, and 183 (31%) were cared for in sub-intensive or intermediate care structures. The frequency of weight loss ≥5% (that defines cachexia) was 37% (range 29-52%). Correlates of weight loss occurrence were reported to be raised C-reactive protein levels, impaired renal function status, and longer duration of COVID-19 disease. Underweight status by WHO criteria (BMI < 18.5 kg/m2 ) was only observed in 4% of patients analysing data from seven studies with 6661 patients. Cachexia assessment in COVID-19 needs assessment of weight loss. COVID-19 associated cachexia is understood to affect muscle and fat tissue as is also seen in many other chronic illness-associated forms of cachexia. There are many factors that can contribute to body wasting in COVID-19, and they include loss of appetite and taste, fever and inflammation, immobilization, as well as general malnutrition, catabolic-anabolic imbalance, endocrine dysfunction, and organ-specific complications of COVID-19 disease such as cardiac and renal dysfunction. Treatment of COVID-19 patients should include a focus on nutritional support and rehabilitative exercise whenever possible. Specific anti-cachectic therapies for COVID-19 do not exist, but constitute a high medical need to prevent long-term disability due to acute COVID-19 disease.


Subject(s)
COVID-19/complications , Cachexia/etiology , Malnutrition/etiology , SARS-CoV-2/isolation & purification , Weight Loss , COVID-19/transmission , COVID-19/virology , Cachexia/pathology , Humans , Malnutrition/pathology
8.
ESC Heart Failure ; 7(6):3261-3267, 2020.
Article in English | ProQuest Central | ID: covidwho-986033

ABSTRACT

The ultimate primary endpoint of SOLOST‐WHF—which in order to preserve statistical power was changed because of the premature closure of the study due to loss of funding from the sponsor during the onset of the COVID‐19 pandemic—was the composite of total HHF, urgent heart failure visits, or cardiovascular deaths. The HR for the primary outcome was apparently similarly reduced in all groups (0.69, 0.74, and 0.66, respectively). Because the subgroup of patients with ejection fraction above 50% was modest in size, further data of SGLT2 inhibitors in heart failure with preserved ejection fraction (HFpEF) are eagerly anticipated. 2 Figure. DAPA‐HF, Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure;EF, ejection fraction;EMPEROR‐Reduced, EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction;GDMT, guideline‐directed medical therapy;HFrEF, heart failure with a reduced ejection fraction;MRA, mineralocorticoid receptor antagonists;RASi, renin‐angiotensin system inhibitors;WHF, worsening heart failure. The EMPEROR‐Preserved (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction) 34 and DELIVER (Dapagliflozin Evaluation to Improve the LIVEs of Patients With PReserved Ejection Fraction Heart Failure;ClinicalTrials.gov Identifier: NCT03619213) trials that are ongoing will provide valuable information in those with HFpEF in the ambulatory setting.

9.
BMC Med ; 18(1): 403, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-979659

ABSTRACT

BACKGROUND: Due to the overlapping clinical features of coronavirus disease 2019 (COVID-19) and influenza, parallels are often drawn between the two diseases. Patients with pre-existing cardiovascular diseases (CVD) are at a higher risk for severe manifestations of both illnesses. Considering the high transmission rate of COVID-19 and with the seasonal influenza approaching in late 2020, the dual epidemics of COVID-19 and influenza pose serious cardiovascular implications. This review highlights the similarities and differences between influenza and COVID-19 and the potential risks associated with coincident pandemics. MAIN BODY: COVID-19 has a higher mortality compared to influenza with case fatality rate almost 15 times more than that of influenza. Additionally, a significantly increased risk of adverse outcomes has been noted in patients with CVD, with ~ 15 to 70% of COVID-19 related deaths having an underlying CVD. The critical care need have ranged from 5 to 79% of patients hospitalized due to COVID-19, a proportion substantially higher than with influenza. Similarly, the frequency of vascular thrombosis including deep venous thrombosis and pulmonary embolism is markedly higher in COVID-19 patients compared with influenza in which vascular complications are rarely seen. Unexpectedly, while peak influenza season is associated with increased cardiovascular hospitalizations, a decrease of ~ 50% in cardiovascular hospitalizations has been observed since the first diagnosed case of COVID-19, owing in part to deferred care. CONCLUSION: In the coming months, increasing efforts towards evaluating new interventions will be vital to curb COVID-19, especially as peak influenza season approaches. Currently, not enough data exist regarding co-infection of COVID-19 with influenza or how it would progress clinically, though it may cause a significant burden on an already struggling health care system. Until an effective COVID-19 vaccination is available, high coverage of influenza vaccination should be of utmost priority.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Coinfection/epidemiology , Influenza, Human/epidemiology , Adult , COVID-19/complications , Cardiovascular Diseases/complications , Female , Humans , Influenza, Human/complications , Male , Middle Aged , SARS-CoV-2
10.
Lancet ; 396(10266): 1895-1904, 2020 12 12.
Article in English | MEDLINE | ID: covidwho-922171

ABSTRACT

BACKGROUND: Intravenous ferric carboxymaltose has been shown to improve symptoms and quality of life in patients with chronic heart failure and iron deficiency. We aimed to evaluate the effect of ferric carboxymaltose, compared with placebo, on outcomes in patients who were stabilised after an episode of acute heart failure. METHODS: AFFIRM-AHF was a multicentre, double-blind, randomised trial done at 121 sites in Europe, South America, and Singapore. Eligible patients were aged 18 years or older, were hospitalised for acute heart failure with concomitant iron deficiency (defined as ferritin <100 µg/L, or 100-299 µg/L with transferrin saturation <20%), and had a left ventricular ejection fraction of less than 50%. Before hospital discharge, participants were randomly assigned (1:1) to receive intravenous ferric carboxymaltose or placebo for up to 24 weeks, dosed according to the extent of iron deficiency. To maintain masking of patients and study personnel, treatments were administered in black syringes by personnel not involved in any study assessments. The primary outcome was a composite of total hospitalisations for heart failure and cardiovascular death up to 52 weeks after randomisation, analysed in all patients who received at least one dose of study treatment and had at least one post-randomisation data point. Secondary outcomes were the composite of total cardiovascular hospitalisations and cardiovascular death; cardiovascular death; total heart failure hospitalisations; time to first heart failure hospitalisation or cardiovascular death; and days lost due to heart failure hospitalisations or cardiovascular death, all evaluated up to 52 weeks after randomisation. Safety was assessed in all patients for whom study treatment was started. A pre-COVID-19 sensitivity analysis on the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT02937454, and has now been completed. FINDINGS: Between March 21, 2017, and July 30, 2019, 1525 patients were screened, of whom 1132 patients were randomly assigned to study groups. Study treatment was started in 1110 patients, and 1108 (558 in the carboxymaltose group and 550 in the placebo group) had at least one post-randomisation value. 293 primary events (57·2 per 100 patient-years) occurred in the ferric carboxymaltose group and 372 (72·5 per 100 patient-years) occurred in the placebo group (rate ratio [RR] 0·79, 95% CI 0·62-1·01, p=0·059). 370 total cardiovascular hospitalisations and cardiovascular deaths occurred in the ferric carboxymaltose group and 451 occurred in the placebo group (RR 0·80, 95% CI 0·64-1·00, p=0·050). There was no difference in cardiovascular death between the two groups (77 [14%] of 558 in the ferric carboxymaltose group vs 78 [14%] in the placebo group; hazard ratio [HR] 0·96, 95% CI 0·70-1·32, p=0·81). 217 total heart failure hospitalisations occurred in the ferric carboxymaltose group and 294 occurred in the placebo group (RR 0·74; 95% CI 0·58-0·94, p=0·013). The composite of first heart failure hospitalisation or cardiovascular death occurred in 181 (32%) patients in the ferric carboxymaltose group and 209 (38%) in the placebo group (HR 0·80, 95% CI 0·66-0·98, p=0·030). Fewer days were lost due to heart failure hospitalisations and cardiovascular death for patients assigned to ferric carboxymaltose compared with placebo (369 days per 100 patient-years vs 548 days per 100 patient-years; RR 0·67, 95% CI 0·47-0·97, p=0·035). Serious adverse events occurred in 250 (45%) of 559 patients in the ferric carboxymaltose group and 282 (51%) of 551 patients in the placebo group. INTERPRETATION: In patients with iron deficiency, a left ventricular ejection fraction of less than 50%, and who were stabilised after an episode of acute heart failure, treatment with ferric carboxymaltose was safe and reduced the risk of heart failure hospitalisations, with no apparent effect on the risk of cardiovascular death. FUNDING: Vifor Pharma.


Subject(s)
Anemia, Iron-Deficiency/drug therapy , Ferric Compounds/therapeutic use , Heart Failure/drug therapy , Maltose/analogs & derivatives , Administration, Intravenous , Aged , Aged, 80 and over , Double-Blind Method , Female , Ferric Compounds/administration & dosage , Heart Failure/complications , Heart Failure/mortality , Hospitalization/statistics & numerical data , Humans , Male , Maltose/administration & dosage , Maltose/therapeutic use , Middle Aged , Patient Discharge , Treatment Outcome , Ventricular Function, Left
12.
Heart Fail Rev ; 26(2): 381-389, 2021 03.
Article in English | MEDLINE | ID: covidwho-739670

ABSTRACT

Coronavirus disease 2019 (COVID-19) is due to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 which binds and enters the host cells through the angiotensin-converting enzyme (ACE)2. While the potential for benefit with the use of renin-angiotensin-aldosterone system inhibitors (RAASi) and the risks from stopping them is more evident, potential harm by RAΑSi may also be caused by the increase in the activity of the ACE2 receptor, the inefficient counter regulatory axis in the lungs in which the proinflammatory prolyloligopeptidase (POP) is the main enzyme responsible for the conversion of deleterious angiotensin (ANG) II to protective ANG [1-7] and the proinflammatory properties of ACE2(+) cells infected with SARS-CoV-2. Acknowledging the proven RAΑSi benefit in patients with several diseases such as hypertension, heart failure, coronary disease, and diabetic kidney disease in the non-COVID-19 era, it is a reasonable strategy in this period of uncertainty to use these agents judiciously with careful consideration and to avoid the use of RAASi in select patients whenever possible, until definitive evidence becomes available.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/chemically induced , Renin-Angiotensin System/drug effects , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Humans
13.
J Am Coll Cardiol ; 76(3): 280-288, 2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-648004

ABSTRACT

BACKGROUND: Although patients with cardiovascular disease face excess risks of severe illness with coronavirus disease-2019 (COVID-19), there may be indirect consequences of the pandemic on this high-risk patient segment. OBJECTIVES: This study sought to examine longitudinal trends in hospitalizations for acute cardiovascular conditions across a tertiary care health system. METHODS: Acute cardiovascular hospitalizations were tracked between January 1, 2019, and March 31, 2020. Daily hospitalization rates were estimated using negative binomial models. Temporal trends in hospitalization rates were compared across the first 3 months of 2020, with the first 3 months of 2019 as a reference. RESULTS: From January 1, 2019, to March 31, 2020, 6,083 patients experienced 7,187 hospitalizations for primary acute cardiovascular reasons. There were 43.4% (95% confidence interval [CI]: 27.4% to 56.0%) fewer estimated daily hospitalizations in March 2020 compared with March 2019 (p < 0.001). The daily rate of hospitalizations did not change throughout 2019 (-0.01% per day [95% CI: -0.04% to +0.02%]; p = 0.50), January 2020 (-0.5% per day [95% CI: -1.6% to +0.5%]; p = 0.31), or February 2020 (+0.7% per day [95% CI: -0.6% to +2.0%]; p = 0.27). There was significant daily decline in hospitalizations in March 2020 (-5.9% per day [95% CI: -7.6% to -4.3%]; p < 0.001). Length of stay was shorter (4.8 days [25th to 75th percentiles: 2.4 to 8.3 days] vs. 6.0 days [25th to 75th percentiles: 3.1 to 9.6 days]; p = 0.003) and in-hospital mortality was not significantly different (6.2% vs. 4.4%; p = 0.30) in March 2020 compared with March 2019. CONCLUSIONS: During the first phase of the COVID-19 pandemic, there was a marked decline in acute cardiovascular hospitalizations, and patients who were admitted had shorter lengths of stay. These data substantiate concerns that acute care of cardiovascular conditions may be delayed, deferred, or abbreviated during the COVID-19 pandemic.


Subject(s)
Cardiovascular Diseases , Coronavirus Infections , Hospitalization/statistics & numerical data , Pandemics , Pneumonia, Viral , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Female , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tertiary Care Centers/statistics & numerical data
14.
Eur Heart J ; 41(22): 2109-2117, 2020 06 07.
Article in English | MEDLINE | ID: covidwho-526858

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has important implications for the safety of participants in clinical trials and the research staff caring for them and, consequently, for the trials themselves. Patients with heart failure may be at greater risk of infection with COVID-19 and the consequences might also be more serious, but they are also at risk of adverse outcomes if their clinical care is compromised. As physicians and clinical trialists, it is our responsibility to ensure safe and effective care is delivered to trial participants without affecting the integrity of the trial. The social contract with our patients demands no less. Many regulatory authorities from different world regions have issued guidance statements regarding the conduct of clinical trials during this COVID-19 crisis. However, international trials may benefit from expert guidance from a global panel of experts to supplement local advice and regulations, thereby enhancing the safety of participants and the integrity of the trial. Accordingly, the Heart Failure Association of the European Society of Cardiology on 21 and 22 March 2020 conducted web-based meetings with expert clinical trialists in Europe, North America, South America, Australia, and Asia. The main objectives of this Expert Position Paper are to highlight the challenges that this pandemic poses for the conduct of clinical trials in heart failure and to offer advice on how they might be overcome, with some practical examples. While this panel of experts are focused on heart failure clinical trials, these discussions and recommendations may apply to clinical trials in other therapeutic areas.


Subject(s)
Betacoronavirus , Clinical Trials as Topic/methods , Coronavirus Infections , Heart Failure , Pandemics , Pneumonia, Viral , Research Design/standards , COVID-19 , Clinical Trials as Topic/ethics , Clinical Trials as Topic/standards , Europe , Heart Failure/complications , Heart Failure/therapy , Humans , Informed Consent/ethics , Informed Consent/standards , Patient Safety , Patient Selection/ethics , SARS-CoV-2
16.
Eur J Heart Fail ; 22(6): 941-956, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-401833

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is causing considerable morbidity and mortality worldwide. Multiple reports have suggested that patients with heart failure (HF) are at a higher risk of severe disease and mortality with COVID-19. Moreover, evaluating and treating HF patients with comorbid COVID-19 represents a formidable clinical challenge as symptoms of both conditions may overlap and they may potentiate each other. Limited data exist regarding comprehensive management of HF patients with concomitant COVID-19. Since these issues pose serious new challenges for clinicians worldwide, HF specialists must develop a structured approach to the care of patients with COVID-19 and be included early in the care of these patients. Therefore, the Heart Failure Association of the European Society of Cardiology and the Chinese Heart Failure Association & National Heart Failure Committee conducted web-based meetings to discuss these unique clinical challenges and reach a consensus opinion to help providers worldwide deliver better patient care. The main objective of this position paper is to outline the management of HF patients with concomitant COVID-19 based on the available data and personal experiences of physicians from Asia, Europe and the United States.


Subject(s)
Betacoronavirus , Cardiology , Coronavirus Infections/epidemiology , Disease Management , Heart Failure/therapy , Pandemics , Pneumonia, Viral/epidemiology , Societies, Medical , COVID-19 , China , Comorbidity , Coronavirus Infections/therapy , Europe , Heart Failure/epidemiology , Humans , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL